Indian Statistical Institute, Bangalore

M. Math. Second Year

Second Semester - Partial Differential Equations

Duration: 3 hours

Mid-Semester Exam

Answer all the questions.

- 1. Let $f \in L^1(R)$ be such that $\int f \varphi = 0$ for all φ in $C^{\infty}_{cpt}(R)$. Show that f = 0. [3]
- 2. Let X be a linear topological space where the topology is determined by a family X = 0 $\{p_{\alpha} : \alpha \in I\}$ of semi norms. Let (Y,q) be a semi normed linear space. Let $T: X \to Y$ be linear map. If T is continuous, then show that there exists $\alpha_1, \alpha_2, ..., \alpha_n$ and $c_1 > c_1$ $0, c_2 > 0, ... c_n > 0$ such that [2]

$$q(Tx) \le \sum_{1}^{n} c_j \ p_{\alpha_j}(x)$$

- 3. Let $P(\partial) = \sum_{j=0}^{k} a_j \ \partial^j, k \ge 2, a_k \ne 0$ and $a_0, a_1 \dots a_k$ be complex numbers. Let $\eta_0 \in R$ be such that $P(i(\xi + i \eta_0))$ is never o for any ξ in R. Show that
 - (a) $\int d\xi \frac{1}{|P(i(\xi+i \eta_0))|} < \infty$ [1]
 - (b) Define $f(x) = \int d\xi \frac{e^{i x(\xi+i \eta_0)}}{P(i(\xi+i \eta_0))}$ [3]Show that f is a fundamental solution for $P(\partial)$.
- 4. Let Ω be open subset of \mathbb{R}^n . $\psi_0, \psi_1 \in (\Omega|$. Such that $\psi_0 \ \psi_1 = \psi_1$ Let $f \in C^{\infty}_{cpt}(\Omega)$. Let $P(\partial)$ be any elliptic PDO. Let u be a tempered distribution on \mathbb{R}^n such that $P(\partial)u = f$ on Ω . Assume that $\psi_0 u \in H^{so}(\mathbb{R}^n)$. Show that $\psi_1 u \in H^{s_0+1}$ $\left[5\right]$
- 5. Prove Youngs Inequality viz $||f * g||_{L^2} \leq ||f||_1 ||g||_{L^2}$
- 6. (Prove Sobolev embedding lemma) $H^s(\mathbb{R}^d) \subset C^{k_o}(\mathbb{R}^d)$ if $s > \frac{d}{2} + k_0$ Here $k_0 = 0, 1, 2, 3...$. [3]
- 7. For g in $\mathbb{S}(\mathbb{R}^d)$ show that $gH^t \subset H^t$ [If you need Peetre inequality, $\langle \xi \rangle^{\sigma} \leq 2^{|\sigma|/2} \langle \eta \rangle^{\sigma} \langle \xi \eta \rangle^{|\sigma|}$ you can use it]. [4]
- 8. Let $P(\partial)$ be elliptic PDO of order m. If $u \in H^s$ and $P(\partial) u \in H^s$ then show that $u \in H^{s+m}$. [3]

Max Marks: 25

Date : March 06, 2015

[1]